Bedarfsgerechte Mineralstoff- und Spurenelementversorgung bei Milchschafen und Ziegen

Karl - Heinz Kaulfuß Elbingerode / Harz

Mineralstoffe

sind für den Organismus lebensnotwendige anorganische Bausteine

< 50 mg / kg Körper</p>
Spurenelemente
Eisen, lod, Kupfer
Zink, Selen, Kobalt,
Molybdän, Mangan,
Nickel

> 50 mg / kg Körper
 Mengenelemente
 Kalzium, Phosphor,
 Natrium, Chlor,
 Magnesium, Kalium,
 Schwefel

Fütterung

Abhängig vom

Körpergewicht (Grundumsatz)

Körperrahmen (TS-Aufnahmevermögen)

Trächtigkeitsstadium

Anzahl der Lämmer

Lämmergeburtsgewicht

Futtermittelpreis

TS-Aufnahmevermögen Schaf

Milchschaf 80 kg

Erhaltungsbedarf		1,2 kg
1 kg Milch	2,4 kg	
2 kg Milch	2,7 kg	2,2 kg
3 kg Milch	3 kg	2,5 kg
4 kg Milch	3,5 kg	3,0 kg

bis 4% der Körpermasse züchterisch beeinflußbar

Leistungsstadium und	Lebendgewicht	Futteraufnahme
Leistungsniveau	kg	kg TM/d
	60	1,0-1,5
Erhaltung oder güst	70	1,0-1,5
	80	1,0-1,5
	60	1,5–1,8
Niedertragend	70	1,5-1,8
	80	1,5-1,8
1749	60	1,5
Hochtragend	70	1,5
1 Lamm (5 kg)	80	1,5
	60	1,5
Hochtragend 2 Lämmer (je 3 kg)	70	1,5
2 Lammer (Je 3 kg)	80	1,5
	60	2,0-2.5
Laktierend 1	70	2,0-2,5
Parks Activities (Parks Parks 1987)	80	2,0-2,5
	60	2,0-2,5
Laktierend 3	70	2,0-2,5
(beim Absetzen)	80	2,0-2,5

Abhängig von der Aufzucht- und Jungschaffütterung

TS-Aufnahmevermögen ist unterschätzt

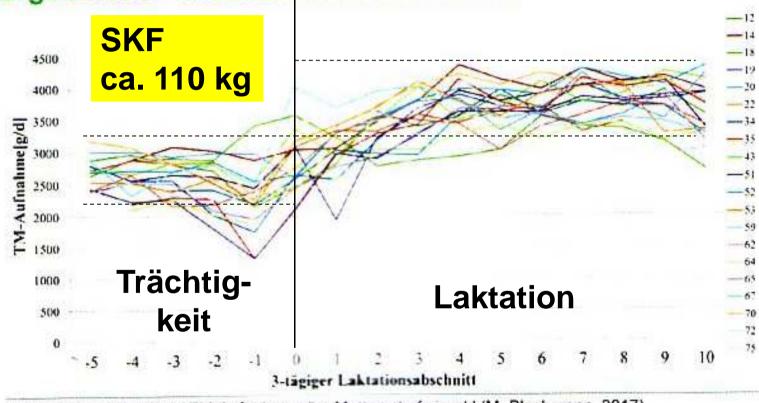


Abb. 7: Darstellung der TM-Aufnahme aller Mutterschafe in g/d (M. Blechmann, 2017)

- ø TM-Aufnahme Hochträchtigkeit 2500 g/d
- ø TM-Aufnahme Laktation 3600 g/d

Trockenmasseaufnahme der adulten Ziege (75 kg)

NATIONAL CONTRACTOR	Trockenmasseaufnahme kg/Tag				
Milchleistung kg/Tag	Milchfett 3 % Milchprotein 2,5 %	Milchfett 4 % Milchprotein 3,5 %			
1,0	1,6	1,7			
2,0	2,0	2,2			
3,0	2,4	2,7			
4,0	2,8	3,2			
5,0	3,2	3,7			
6,0	3,6	4,2			

oder

	% des Körpergewichtes
Wachstum	0,8 – 1,0
Erhaltung	2,3
Trächtigkeit	2,2
Laktation	3,5

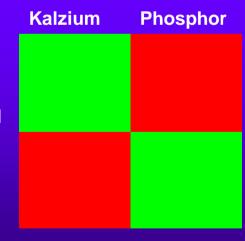
Bedarfsnormen:

Tabellen..
unterschiedliche
unterschiedliche
Werte...

Bedarfsnormen des wachsenden Lammes Schaf (g / Tier und Tag) bei ca. 300g Tageszunahme

Lebendmasse (kg)	TS pro Tag (kg)	Ca (g)	P (g)	Mg (g)	Na (g)
20	0,6-1,0	7	3	0,6	0,6
30	0,8 – 1,3	9	3,5	0,80	0,8
40	1,0 – 1,5	11	4	1,0	1,0

Ziege (g / Tier und Tag) bei ca. 200g Tageszunahme


Lebendmasse (kg)	TS pro Tag (kg)	Ca (g)	P (g)	Mg (g)	Na (g)
10	0,63	4	2,3	1,0	0,5
20	1,0	4,6	2,8	1,3	0,6
30	1,31	5,1	3,2	1,7	0,7

Mineralstoffe Schaf (g/Tier und Tag)

Leistungsgruppe/	Mengenelemente [g/(Tier und Tag)]			
Voraussetzungen	Ca	Р	Mg	Na
Wachsende Schafe	7-11	3-4	0,6-1	0,6-1
Mutterschafe (70-80 kg)				
Güst und niedertragend	5	4	- 1	1
Hochtragend	9	6	1,5	2
Laktierend	10-15	5-8	1,5-2,5	1,5-2

Leistungsabschnitt	Mengenelemente in g/Tag					
(10 bis 80 kg LG)	Calcium	Phosphor	Natrium			
Güstzeit	7,5	5,5	1,5			
niedertragend (ab 90. Tag)	8,5	6,0	2,0			
hochtragend (ab 90. Tag)	15,0	7,5	2,0			
laktierend (ein Lamm)	17,0	9,0	2,0			
laktierend (zwei Lämmer)	20,0	10,0	2,5			

Heu
Grassilage
Trockenschnitzel
Getreide
Sojaschrot
Erbsen

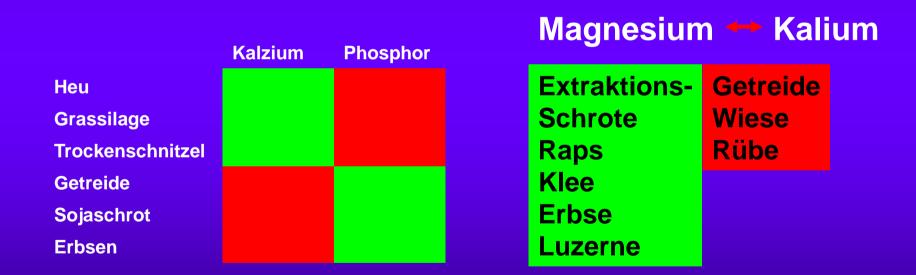
Mineralstoffe Ziege (g/Tier und Tag)

	Ca	Р	Mg	Na
Güst / niedertragend	3,1	2,1	1,3	0,6
ab 5. Trächtigkeitsmonat	7,0	4,5	2,0	0,9
Laktation:				
1 Liter Milch	4,3	3,1	2,2	0,9
2 Liter Milch	6,9	4,9	3,3	1,5
3 Liter Milch	9,5	6,6	4,4	2,1
4 Liter Milch	12,0	8,3	5,4	2,6
5 Liter Milch	14,6	10,0	6,5	3,2
6 Liter Milch	17,1	11,6	7,5	3,8

Spurenelementversorgung der Mutterschafe

Leistungsabschnitt	Spurenelemente in mg/Tag							
(70 bis 80 kg LG)	Eisen	Kupfer	Mangan	Zink	Selen	Jod		
Güstzeit	64	8	64	56	0,16	0,5		
niedertragend (bis zum 90. Tag)	64	8	64	56	0,16	0,5		
hochtragend (ab 90. Tag)	80	10	80	70	0,20	0,6		
laktierend (ein Lamm)	96	12	96	84	0,24	0,7		
laktierend (zwei Lämmer)	96	12	96	84	0,24	0,7		

Mineralstoffgaben (lose) unbedingt erforderlich ca. 30 g / MS und Tag Vitaminisierung der Mutterschafe (Vitamin A, D, E (Se))


Empfohlene Spurenelementkonzentrationen (Richtwerte in mg / kg TS) im Futter für Schafe und Ziegen

	Schaf	Ziege
Selen (Se)	0,1-0,2	0,1-0,2
Zink (Zn)	30 - 40	50 - 80
Kobalt (Co)	1,1-0,2	0,15-0,2
Kupfer (Cu)	4 – 11	10 - 15
Eisen (Fe)	30 - 50	40 - 50
Mangan (Mn)	20 - 40	60 - 80

Woher kommen die notwendigen Mineralstoffe und Spurenelemente?

	Gehalt in g je kg Trockensubstanz (TS)						
	TS %	Ca	P	Mg	Na	K	
Wiesenfutter							
(grün, getrocknet, siliert)							
Gräserreich	10 - 20	5.0 - 10.5	$1.6 - 4.5^{1}$	1.2 - 2.2	0.2	15 - 31 ¹	
 Ausgewogen 	10 - 20	7.0 - 11.5	$1.5 - 4.3^{1}$	1.5 - 2.7	0.2	17 - 341	
Kräuterreich	10 - 20	11.0 - 15.5	$1.4 - 4.5^{1}$	2.4 - 3.6	0.2	16 - 341	
Maissilage	30	2.3	2.7	0.9	0.1	13	
Kartoffeln	24	1.0	2.5	1.0	0.1	22	
Futterrüben	19	2.1	2.2	1.3	0.7	18	
Gerste	87	0.6	4.5	1.2	0.1	6	
Mais	87	0.2	3.2	1.2	0.1	4	
Rapsextraktionsschrot	91	9.9	14.0	5.1	0.3	14	
Sojaextraktionsschrot	88	3.6	7.7	3.6	0.4	22	
¹ Unterer Wert: insbesondere	Magerwie	esen					

Woher kommen die notwendigen Mineralstoffe und Spurenelemente?

Na CI = über externe Salzgaben (lose/Steine/eingemischt)

Essenzielle Spurenelemente für Ziegen und Schafe

= Essenzielle Spurenelemente für Pflanzen ?

essenzielle (=lebensnotwendige) Spurenelement von praktischer Bedeutung für Tiere: Fe, Mn, Zn, Cu, Mo, Co, Se, J nur teilweise identisch mit für Pflanzen essenziellen Spurenelementen: Fe, Mn, Zn, Cu, (CI), B, Mo, (Co) Spurenelementbedarf von Pflanzen nicht in jedem Fall identisch mit dem von Tieren, d.h. trotz optimaler Versorgung der Pflanzen können Mangelerscheinungen bei Tieren auftreten

Beispiel: Spurenelementgehalte ausgewählter Futtermittel

			Geha	ılt in mş	g/kg TS			
	Fe	I	Cu	Mn	Zn	Co	Mo	Se
Wiesenfutter	160	0.4	8	60	30	0.1	0.4	0.03
Maissilage	210	-	8	44	32	0.1	0.3	0.02
Kartoffeln	45	0.2	6	7	17	0.1	0.3	0.02
Futterrüben	130	0.4	5	83	25	0.2	0.2	0.03
Gerste	44	0.3	7	18	27	0.1	0.3	0.17
Mais	32	0.4	4	9	30	0.1	0.3	0.10
Rapsextraktionsschrot	414	0.7	7	75	74	0.2	0.6	
Sojaextraktionsschrot	160	0.6	19	33	70	0.3	4.3	0.25

Spurenelementgehalte in Feldgehölzen

		Spure	Spurenelementgehalt in mg/kg (TM)	halt in mg/k	g (TM)		
	Fe	Mn	Zn	Cu	Co	Se	
Acer campester (Feldahom)	91	329	32	17	<0,2	0,031	
Ainus glutinosa (Schwarzerle)	118	150	37	20	<0,2	0,061	
Betula pendula (Hangebirke)	94	83	181	10	<0,2	0,028	H
Carpinus betulus (Hainbuche)	172	2371	36	18	0,33	90'0	-
Corylus avellana (Haselnuss)	162	541	31	18	0,72	0,043	-
Crataegus monogyna (Eingriffeliger Weißdorn)	66	44	19	7	<0,2	<0,02	
Frangula alnus (Faulbaum)	83	131	27	7	<0,2	0,098	
Populus nigra (Schwarzpappel)	103	44	105	6	<0,2	0,026	
Prunus spinosa (Schlehe)	100	20	19	19	<0,2	<0,02	-
Quercus robur (Stieleiche)	118	182	19	7	<0,2	0,036	981
Rubus fruticosus (Brombeere)	129	783	28	16	<0,2	<0,02	
Rubus idaeus (Himbeere)	160	256	43	19	<0,2	0,075	10.5
Salix alba (Silberweide)	140	84	409	6	<0,2	0,129	36
Salix caprea (Salweide)	117	170	128	9	<0,2	<0,02	
Sambucus nigra (Schwarzer Holunder)	102	26	31	12	<0,2	0,022	
Viburnum opulus (Gemeiner Schneeball)	152	26	47	7	<0,2	0,028	018

Empfohlene Konzentration im Eutrer (TM) für						0.03
Schafe	30 - 20	20 - 40	20 - 33	4 - 11	0,1-0,2	0,05
Empfohlene Konzentratrion im Futter (TM)						
für Ziegen	40 - 50	60 - 80	20 - 80	10 - 15	10 - 15 0.15 - 0.2	0,1-0,2

Futterempfehlungen nach NRC (1985), Australian Agricultural Council (1990), Whitehead (2000), GfE (2003)

Schafe können bis zu 20%, Ziegen bis zu 60% ihres Futterbedarfes durch Laub und frische Triebe decken (Rahmann, 2004).

Bedeutung der Bodenaufnahme für die Spurenelementversorgung von Kleinwiederkäuern

Modellkalkulation für Schafe (Paulsen, 2004)

otigte N/kg Futt	enge in r (TM)		Absorption im Tier in %	Normale E	Sodengehalte mg/kg	i e	Aufnahme in mg bei Ve von 100 g Boden	mg b	ei Verzehr oden
•	50 10	10		6650	- 9100		66,5		91
		4,0		250	- 650		0,1		0,26
	33 14	4		19	- 186		0,27		2,6
	11 55	55		т	- 67		0,165		3,7
0,1 - 0,2 1	0,2	-		വ	- 20,4	4	0,005		0,02
	0,05 34	34		0,02	, o	0,16	0,0007		0,003
	0,6	10		0,0025	· 0	0,15	0,000025		0,0015

Benötige Mengen nach NRC (1985); Australian Agricultural Council (1990); Whitehead (2000); Absorption: Healy Schachtschabel (1998); Hartfiel und Bahners (1988); Kirchner et al. (1996); Jopke et al. (1994); Sutfle (1974) (1970); Sample and Suter (1994); Bodengehalte: Paulsen (1999); Lübben und Sauerbeck (1991); SchefferDie Aufnahme von Boden kann bei Schafen zwischen 2 und 25% der täglichen Futter-Trockenmasse betragen. Dabei wird bereits ein m.o.w. großer Teil des Spurenelementbedarfs gedeckt (Lee, 2002).

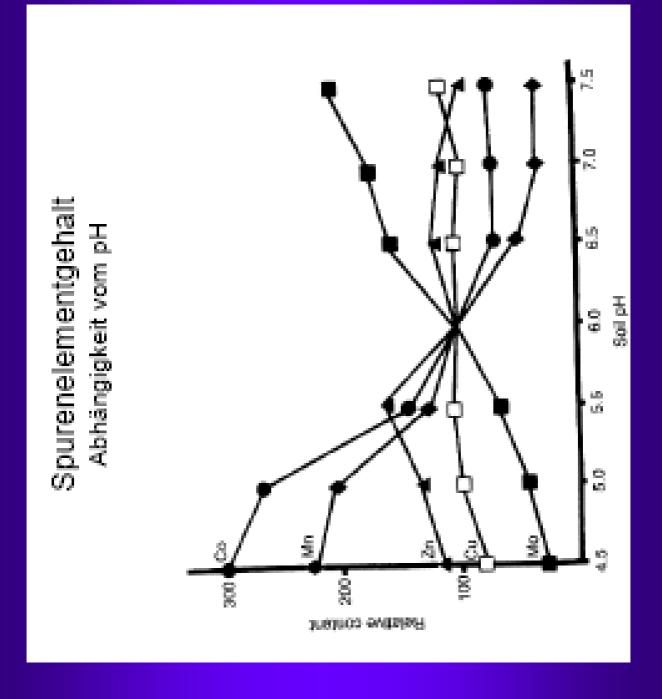
Aber so einfach ist es nicht denn.....

Abhängigkeit der Mineralstoffaufnahme und des Mineralstoffgehaltes der Pflanzen

- geologische Herkunft des Standortes
- pH-Wert des Bodens
- Bodenart
- Feuchtigkeit im Boden
- Düngung
- Entfernung vom Meer

Spurenelementgehalte unterschiedlicher Ausgangsgesteine von Böden

Mittlerer Spurenelementgehalt in mg/kg (Maxima in Klammern)

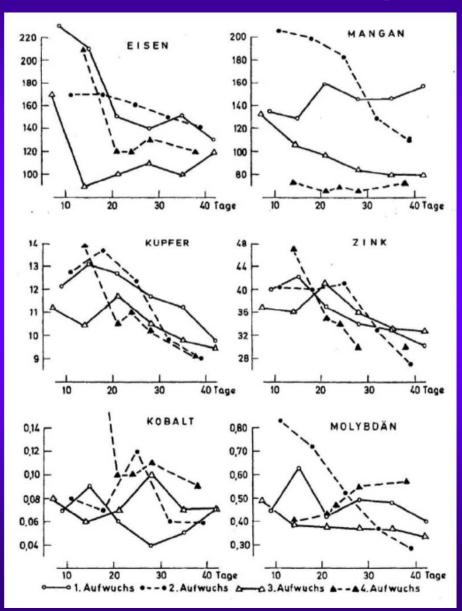

		Magmatite		Se	Sedimentgesteine	Э
	ultrabasisch	basisch	granitisch	Kalkstein	Sandstein	Tonschiefer
Mn	1040	1500	400	620	460	850
Z,	58	100	52	20	30	120 (<1000)
n	cu 42	06	13	5,5	30	39 (<300)
Νo	0,3	_	2	0,16	0,2	2,6 (<300)
ဝိ	110	35	_	0,1	0,3	19
Se	0,13	0,05	0,05	0,03	0,01	0,5 (<675)

Ultrabasisch z.B. Dunit, Serpentinit, Peridotit; basisch z.B. Basalt; granitisch z.B. Granit, Rhyolith

Aus: Alloway (1999)

Der Bodengehalt ist in erster Linie vom Ausgangsgestein abhängig (Ausnahme: J, Hauptinput aus Atmosphäre, Whitehead, 2000).

geringe Konzentrationen an Spurenelementen, basische Magmatite und Saure (granitische) Magmatite sowie Sand- und Kalksteine enthalten oft Tonschiefer dagegen häufig hohe Konzentrationen.


Zeigerpflanzen – Boden pH

Alkalische Reaktion	Saure Reaktion
Aufrechte Trespe (Bromus erectus) Esparsette (Onobrychis viciifolia) Pastinak (Pastinaca sativa) Wiesensalbei (Salvia pratensis) Kleiner Wiesenknopf (Sanguisorba minor) Fiederzwenke (Brachypodium pinnatum) Knäuelglockenblume (Campanula glomerata) Karthäusernelke (Dianthus carthusianorum) Dornige Hauhechel (Ononis spinosa) Mittlerer Wegerich (Plantago media) Knolliger Hahnenfuß (Ranunculus bulbosus)	Heidekraut (Calluna vulgaris) Weiches Honiggras Borstgras (Nardus stricta) Kleiner Sauerampfer Arnika (Arnica montana) Schafschwingel (Festuca ovina) Horstrotschwingel (Festuca rubra ssp. commutata) Flatterbinse (Juncus effusus) Bärwurz (Meum athamanticum) Dreizahn (Sieglingia decumbens)

Spurenelemente düngen oder zufüttern ?

- Spurenelementmängel werden sehr häufig nicht durch unzureichende Bodengehalte, sondern durch begrenzte Verfügbarkeit der Spurenelemente im Boden verursacht.
- Nur eindeutig erkannte Spurenelementmängel im Boden sollten durch Bodendüngung behoben werden (Alternative: physiologisch saure Düngung zur Erhöhung der Spurenelementverfügbarkeit).
- Anreicherung von Pflanzen auf ein tierphysiologisch erwünschtes Niveau am effizientesten durch Blattdüngung. Dies ist jedoch oftmals fragwürdig, da
- Antagonismen ausgelöst werden können (typisch z.B. zwischen Fe, bei der Spurenelementaufnahme durch Pflanzen unerwünschte Mn, Zn, Cu, Mo und Se, Kabata-Pendias, 2000) **und**
- schädliche Wirkungen auf Pflanzen möglich sind (Toxizitätsschwelle für Pflanzen beachten!).
- Wo Anreicherung von Spurenelementen durch Düngung unsicher erscheint, ist gezielte Supplementation bspw. durch Gabe eines Mineralfutters

Abhängigkeit der Mineralstoffaufnahme und des Mineralstoffgehaltes der Pflanzen

Pflanzenalter: jung > alt

Pflanzenteil:
Blätter > Stengel
Aufwuchs > Körner/Samen
Getreidekornhüllen
> als Mehlkörper

UND DESHALB!

Neben regelmäßigen Futtermittelanalysen und deren Einbeziehung in die Rationsberechnung steht somit die Kontrolle der Mineralstoff- und Spurenelementversorgung am Tier im Fokus der Verhinderung eines pathologischen Spurenelementmangels. Dabei sollte nicht auf das Auftreten klinischer Symptome gewartet werden, sondern in Abhängigkeit vom Leistungsstadium (Bedeckung, Hochträchtigkeit, Laktation, Lämmermast) regelmäßig Kontrolluntersuchungen an ca. 5 Tieren durchgeführt werden. Oftmals stellt sich ein beginnender Spurenelementmangel nur sehr diskret dar und wird häufig übersehen.

Achtung

- kein Vollblut
- zeitnaher Versandt
- Plasma davor abzentrifugieren
- Cu, Co, Se auch Schlachtlebern
- Zn im Knochen

Richtwerte für ausgewählte Spurenelementkonzentrationen in Blutserum und Leber beim ausgewachsenen Schaf (man beachte die Mengeneinheiten, letztere können zwischen unterschiedlichen Laboren in Abhängigkeit vom Auswertungsmodus variieren, ebenso die Referenzbereiche)

	Blutserum	Leber
Selen (Se)	1,7 – 2,2 µmol/l	
Zink (Zn)	12-22 µmol/l (Aussage vor allem bei Mangelzuständen)	ca. 12 mg / kg TS
Kobalt (Co)	Vitamin B12-Gehalt bei Mangel < 0,15nmol/l	Vitamin B12-Gehalt bei Mangel < 140 nmol / kg OS
Kupfer (Cu)	8 – 22 µmol/l (Aussage vor allem bei Mangelzuständen)	10 mg – 100 mg / kg OS 80 – 200 mg / kg TS

Therapie / Ergänzung

- akute Erkrankung
 - Arzneimittel (Ca, Ph, Mg, Na, Cl, Se, Co, Fe)
 - Fehlen von Cu, Zn und J haltigen Arzneimitteln

- perakute Erkrankung / Mangel bei Belastungssituationen
 - Verabreichung von "Booster-Drenchs"
 - Leckmassen
 - Wirkdauer bis 4 Wochen
- chronische Erkrankung / Mangel
 - Verabreichung mineralisierten Pellet
 - loses Mineralfutter
 - Pansenboli (bei Spurenelementen)

Wirkdauer bis 6 Monate

ratur (15 - 20°C) bringer Schafe über 25 kg Körpergewicht: 1 Bolus

Complementary feeding stuff suitable for feeding EWES, TUPS and LAMBS

Protein 0%, Oil 0%, Fibre 0%, Ash 6%, Moisture 75%, Composition per Litre.

VITAMIN A	6,000,000 IU	THIAMINE HYDROCHLORIDE B:	2,500 mcg
VITAMIN D ₂	600,000 IU	SELENIUM (as sodium selenate)	30 mg
VITAMIN E (alpha-tocopherol)	12,000 mg	BIOTIN	3,000 mcg
VITAMIN K	250 mg	IODINE (as potassium iodide)	3,000 mg
RIBOFLAVIN	1,500 mg	COBALT (as basic cobaltous corbonate mono)	1,500 mg
VITAMIN B12	12,500 mcg	MANGANESE	2,000 mg
FOLIC ACID	127 mg	(as manganese chelate of amino acid chel	ate)
PANTHENOL	1,250 mg	ZINC (as zinc chelate of amino acid chelate)	6,000 mg
NICOTINAMIDE	2,750 mg	IRON	1,000 mg
ASCORBIC ACID	850 mg	(as iron chelate of amino acid hydrate)	1,000 mg

EWES	15ml per	adult 70kg Ewe
TUPS	15ml 4 to prior to tu	
LAMBS	10kg 20kg	3ml 5ml
	ZUKY	200

Shake well before use. Do not exceed recommended amount or repeat dose within 7 days. For animals use only. Store in a coal place away from sun light. Keep out of reach

For all breeding stock prior to mating and 4 weeks before lambing, and for all lambs after weaning and at 2/3 month intervals thereafter.

2.5L

Kalzium

Aufgaben: Enzymaktivierung Muskelkontraktion Knochenaufbau

Rachitis

Kalziummangel:

Primär durch Mangelfütterung Sekundär durch erhöhten Ca-Bedarf im Wachstum, Trächtigkeit, Milchleistung

Blutwerte:

Ca-Mangel: < 1,75 mmol/l

Hypokalzämie tragender Schafe/Ziegen (Milchfieber)

Zeitpunkt:

4 Wochen vor bis 1 Woche nach der Ablammung

Klinik:

Bewegungsstörungen

Nachziehen der Hinterbeine

Festliegen (ähnlich der Ketose, oft vergesellschaftet)

Verweigerung der Futteraufnahme

Einstellen der Pansen- und Darmaktivität

Körpertemperatur <= 38°C

Mehrlingsträchtigkeiten

Therapie der Hypokalzämie

Lämmer:

Licht und Sonne

Vitamin D (10.000 IE kg KM)

Mineralstoffgaben (Ca : Ph = 2 bzw. 3 : 1 in der Gesamtration)

festliegende Alttiere:

Vitamin D (10.000 IE kg KM)

Ca-Applikation

50 - 100 ml einer 20% Ca-Glukoselösung s.c.

50 - 100 ml einer 5 – 10 % Ca-Lösung i.v.

Magnesium

Aufgaben:

Enzymaktivierung Nerven / Muskelfunktion (Synapsen) Knochenaufbau

Regulation:

nur über Futteraufnahme und Ausscheidung über die Niere = keine Mobilisation aus dem Körper möglich

Blutwerte:

Mg-Mangel: < 0,6 mmol/l

Hypomagnesämie - Weidetetanie

Zeitpunkt:

Frischer erster Aufwuchs, Vermehrungsgras, nach Düngung

weil:

- hoher Eiweiß- und Kaliumgehalt
 Kalium in TS = 24% Mg-Verdaulichkeit
 Kalium in TS = 6% Mg-Verdaulichkeit
- In fast allen Pflanzen geringer Natrium-Gehalt Nord-Süd-Gefälle Na-Mangel = Na im Speichel = Kalium im Speichel steigt

Hypomagnesämie - Weidetetanie

Klinik:

oft lange latent
Zähneknirschen
unsicherer Gang
Muskelzittern
Übererregbarkeit (nach Reizen)
Krämpfe
keine Futteraufnahme

schonende Behandlung, kein Streß!

Hypomagnesämie - Weidetetanie

Therapie:

Ruhe

Aufstallung und Heu oder Trockenschnitzel

Akute Form: 40 ml 25% Mg-Glukonat s.c., i.v.

Subakute Form: 5 g Magnesiumoxid+5 g Salz oral

Salzleckstein (max 100g/Tag)

(60 g MgCl in 200 ml Wasser rektal)

Prophylaxe:

Mineralfutter + Salzstein auch bei Weide bei Frühjahrsweide Heu / Stroh anbieten Weideregime anpassen

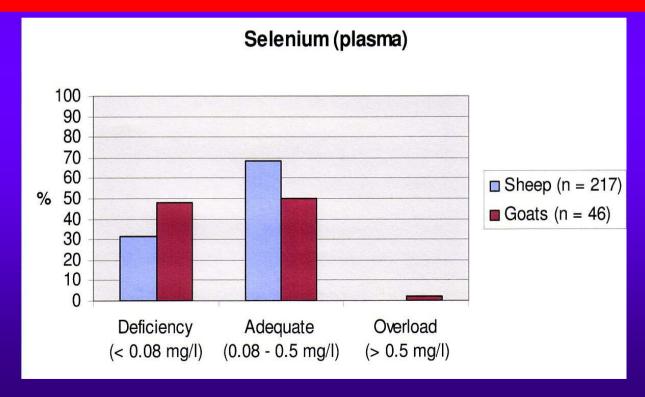
Selen

Aufgaben:

Entgiftung des Körpes / Radikalfänger Bestandteil der Gluthathionperoxydase Muskelaufbau

Selen und Vitamin E wirken synergistisch 1 mg Na-Selenit = 0,3 mg Selen

Blutwerte:


Se-Mangel: < 0,7 µmol/l

Äthiologie:

geringe Se- und Vit E Gehalte in Milch hoher Anteil ungesättigter Fettsäuren

Siersleben, Süß, Pfeifer u. Döring (2007)

in 19 von 20 Schäfereien war der Selen- und Zinkgehalt güster Mutterschafe unterhalb des unteren physiologischen Grenzwertes

- Totgeburten,
- Saugschwäche und Festliegen der Lämmer, Muskelzittern
- steifer Gang, Bewegungsunlust
- Teilnahmslosigkeit
- vermehrtes Liegen
- flache Atmung
- plötzliches Verenden infolge einer Herzmuskelunterentwicklung
- Fruchtbarkeitsstörungen
- Nachgeburtsverhaltungen
- steigendes Mastitisrisiko

Nutritive Muskeldystrophie der Lämmer

Herzmuskelschwäche

Nutritive Muskeldystrophie der Lämmer

Therapie

- maximal 0,2 mg Se plus 10 –100 IE Vitamin E / kg KM s.c./i.m.
 einmalig,
- Wiederholung nach 3 bis 4 Wochen
- orale Selenversorgung 0,2 mg / kg TS
- orale / parenterale Gaben von Vitamin E

<u>Prophylaxe</u>

- Futterangebot 0,2 mg Selen / kg TS
- Parenterale Gabe von Selen / Vitamin E an tragende Mutterschafe ein- bis zweimal in der Trächtigkeit 2,5 mg Se plus 750 IE Vitamin E
- Lämmer am zehnten Lebenstag und im 8. Lebensmonat
- selenhaltige Pillen oder slow release boli (nicht Deutschland)

lod

Aufgaben:

Grundbaustein der Schilddrüsenhormone Schilddrüsenhormone (Thyroxin) regulieren Stoffwechsel und Wachstum

Blutwerte:

Thyroxin-Mangel: < 35 μg/l

Äthiologie:

primär: iodarme Böden (Wasser 10 µg/l küstennah,

1 µg/l küstenfern)

sekundär: Iodantagonisten (Nitrat, Nitrit, Kobalt, Arsen,

Fluor, bzw. Grünraps, Markstammkohl,

Rapsschrot)

Schilddrüsenerkrankungen

Iodmangel - Klinik

adulte Tiere

- Frühgeburten / Verlammungen
- Lebensschwache Lämmer
- Nachgeburtsstörungen

Lämmer

- lebensschwach
- Atemprobleme
- Struma

lodmangel - Therapie

1 % Kalium-lodid-Lösung 1 ml Lamm

3 ml Ziege

Mineralstoff iodhaltige Futtermittel

Fischmehle, Rapsextraktionsschrot

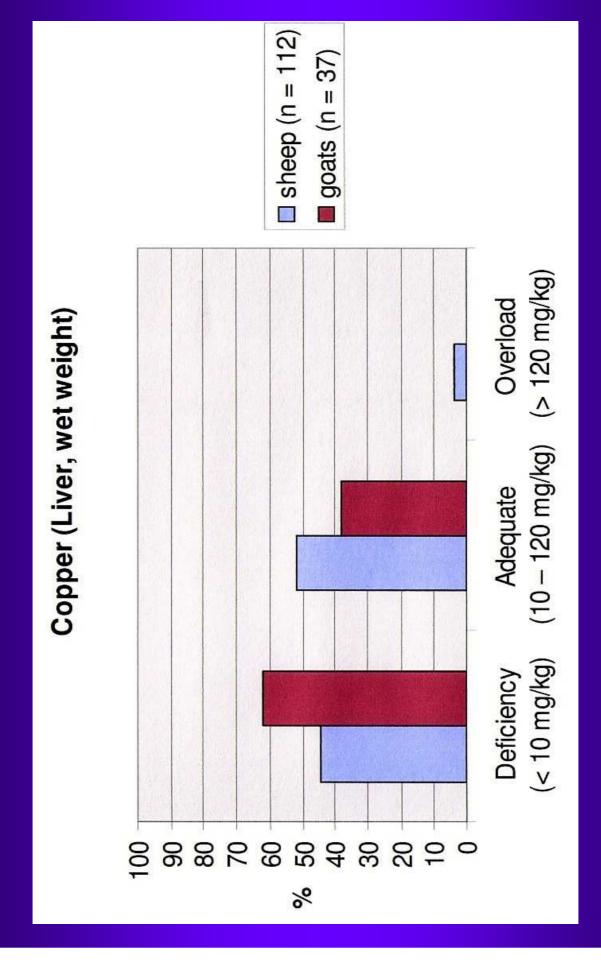
Kupfer

Aufgaben:

Blutaufbau Haut / Haare Nervensystem Stoffwechsel

Swayback

Leberwerte:


Cu-Mangel, < 10 mg / kg Leber, Originalsubstanz

Äthiologie:

primär: Cu-arme Pflanzen, Schaffertigfutter für Ziegen

sekundär: Cu-Antagonisten (Zink, Molybdän, Schwefel,

Eisen)

Kupfermangel - Klinik

Kümmern, spröde Wolle, Blutarmut

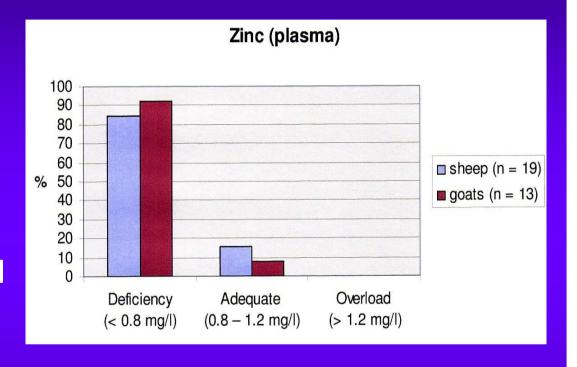
- Frühform
 - Festliegen, Lähmungen, Sauglust erhalten
- Spätform (1. LW 4. Monat)
 - schwankender Gang, Einknicken in der Hinterhand
- Erwachsene Tiere
 - Überköten in der Hinterhand

Ursächlich ist es eine Degeneration der Gehirn und Nervensubstanz

Kupfermangel - Therapie

1 % Kupfersulfatlösung oral 10 ml Lamm 2 % Kupfersulfatlösung oral 50 ml Ziege Mineralstoff

"Rinderfertigfutter"


Zink

Aufgaben:

regulieren Stoffwechsel Haut- und Haarkleid Immunsystem

Blutwerte:

Zink-Mangel: < 10 µmol/l

Äthiologie:

primär: so gut wie nicht, mutterlose Lämmer-

aufzucht

sekundär: erhöhter Zinkbedarf bei (chronischen)

Infektionen (CAE, Pseudotuberkulose)

Zinkmangel - Klinik

- verminderte Freßlust
- Kümmern
- verstärkter Speichelfluß (zäh)
- schütteres Haarkleid
- Schorf- Krustenbildung an Nase, Oberlippe und Ohr
- brillenartiger Haarausfall um die Augen
- Störungen des Hornwachstums
- Fruchtbarkeitsstörungen (Böcke)

Therapie: 50 mg Zink / tägl. oral

Kobalt

Aufgaben:

Co ist Zentralatom von Vitamin B12 dieses wird von Pansenmikroben gebildet B12 hat zentrale Bedeutung im Zucker- und Eiweißstoffwechsel

Blutwerte: Cobalamingehalt bei Mangel, < 0,2 ppm

<u>Ätiologie</u>

- primäre Form wenn Futter < 0,1 mg Co / kg TS
- klinische Erscheinungen erst längerfristig < 0,04 mg Co / kg
 TS
- cobaltarm Gras, Mais, Stroh, Getreide
- cobaltreich- Hefe, Leguminosen, Kräuter, Trockenschnitzel, Extraktionsschrote
- Cobaltmangelstandorte (Sand-, Niederungsmoor-, Kalk-, Porphyr-, Granitböden, Kalkdüngung)
- sekundär hoher K-Gehalt im Futter

Kobaltmangel - Klinik

Subklinische Form

- Leistungsdepression
- Wachstumsdepression
- Abmagerung
- erhöhte Infektionsanfälligkeit (Parasiten)
- Blutarmut

Klinische Form

- hochbeiniger, wenig bemuskelter, schmaler Körper
- relativ großer Kopf
- Inappetenz, Lecksucht
- struppiges Haarkleid
- Durchfall, Indigestion
- Fruchtbarkeitsstörungen
- Abmagerung bis "auf das Skelett"
- erhöhte Photosensibilität

Kobaltmangel - Therapie

Cobalt oder Vitamin B12-haltige Arznei- oder Futtermittel

0,3 – 1 mg Cobalamin parenteral (Catosal, Bayer)

50 – 75 mg Kobalt oral alle 2-3 Wochen

Eisen

Aufgaben: Blutbildung

Blutwerte:

Eisen-Mangel: < 20 µmol/l

Äthiologie:

neugeborene Lämmer: physiologische Anämie

mutterlose Aufzucht

adulte Tiere: chronische Infektionskrankheiten

Verwurmung (H. contortus)

Eisenmangel - Klinik

Anämie = Blutarmut
blasse, aschfahle Haut
weiße Schleimhäute (Konjunktiven)
Atemnot
Tiere nicht belastbar
spontanes Niederbrechen
Verendungen

Eisenmangel - Therapie

parenterale Eisendextrangabe

Lämmer: 300 – 500 mg

Ziegen: 500 mg mehrfach

Prophylaxe: 300 mg zwischen dem 2 .- 10. Lebenstag

